Современные земные обсерватории. Что такое обсерватория и для чего она нужна? Усиление государственной поддержки

Подписаться
Вступай в сообщество «rmgvozdi.ru»!
ВКонтакте:

Оптические обсерватории. Место для строительства оптической обсерватории обычно выбирают вдали от городов с их ярким ночным освещением и смогом. Обычно это вершина горы , где тоньше слой атмосферы, сквозь который приходится вести наблюдения. Желательно, чтобы воздух был сухим и чистым, а ветер не особенно сильным. В идеале обсерватории должны быть равномерно распределены по поверхности Земли, чтобы в любой момент можно было наблюдать объекты северного и южного неба. Однако исторически сложилось так, что большинство обсерваторий расположено в Европе и Северной Америке, поэтому небо Северного полушария изучено лучше. В последние десятилетия начали сооружать крупные обсерватории в Южном полушарии и вблизи экватора, откуда можно наблюдать как северное, так и южное небо. Древний вулкан Мауна-Кеа на о. Гавайи высотой более 4 км считается лучшим местом в мире для астрономических наблюдений. В 1990-х годах там обосновались десятки телескопов разных стран. Башня. Телескопы - очень чувствительные приборы. Для защиты от непогоды и перепадов температуры их помещают в специальные здания - астрономические башни. Небольшие башни имеют прямоугольную форму с плоской раздвигающейся крышей. Башни крупных телескопов обычно делают круглыми с полусферическим вращающимся куполом, в котором для наблюдений открывается узкая щель. Такой купол хорошо защищает телескоп от ветра во время работы. Это важно, поскольку ветер раскачивает телескоп и вызывает дрожание изображения. Вибрация почвы и здания башни также отрицательно влияет на качество изображений. Поэтому телескоп монтируют на отдельном фундаменте, не связанном с фундаментом башни. Внутри башни или вблизи нее монтируют систему вентиляции подкупольного пространства и установку для вакуумного напыления на зеркало телескопа отражающего алюминиевого слоя, тускнеющего со временем. Монтировка. Для наведения на светило телескоп должен вращаться вокруг одной или двух осей. К первому типу относятся меридианный круг и пассажный инструмент - небольшие телескопы, поворачивающиеся вокруг горизонтальной оси в плоскости небесного меридиана. Двигаясь с востока на запад, каждое светило дважды в сутки пересекает эту плоскость. С помощью пассажного инструмента определяют моменты прохождения звезд через меридиан и таким образом уточняют скорость вращения Земли; это необходимо для службы точного времени. Меридианный круг позволяет измерять не только моменты, но и место пересечения звездой меридиана; это нужно для создания точных карт звездного неба. В современных телескопах непосредственное визуальное наблюдение практически не применяется. В основном их используют для фотографирования небесных объектов или для регистрации их света электронными детекторами; при этом экспозиция иногда достигает нескольких часов. Все это время телескоп должен быть точно нацелен на объект. Поэтому с помощью часового механизма он с постоянной скоростью поворачивается вокруг часовой оси (параллельной оси вращения Земли) с востока на запад вслед за светилом, компенсируя этим вращение Земли с запада на восток. Вторая ось, перпендикулярная часовой, называется осью склонений; она служит для наведения телескопа в направлении север-юг. Такую конструкцию называют экваториальной монтировкой и используют почти для всех телескопов, за исключением самых крупных, для которых более компактной и дешевой оказалась альт-азимутальная монтировка. На ней телескоп следит за светилом, поворачиваясь одновременно с переменной скоростью вокруг двух осей - вертикальной и горизонтальной. Это значительно усложняет работу часового механизма, требуя компьютерного контроля. Телескоп-рефрактор имеет линзовый объектив. Поскольку лучи разного цвета преломляются в стекле по разному, линзовый объектив рассчитывают так, чтобы он давал в фокусе четкое изображение в лучах какого-то одного цвета. Старые рефракторы создавались для визуальных наблюдений и поэтому давали четкое изображение в желтых лучах. С появлением фотографии стали строить фотографические телескопы - астрографы, дающие четкое изображение в голубых лучах, к кото

Звездное небо завораживает. Хотя сегодня удовольствие увидеть Млечный путь весьма затруднено - запыленность атмосферы, особенно в городах, значительно снижает возможность рассмотреть звезды в ночном небе. Именно поэтому поход в астрономическую обсерваторию становится откровением для обывателя. И звезды снова начинают вселять в человека надежды и мечты. В России обсерваторий порядка 60, о самых главных пойдет речь в данной статье.

Немного общих знаний

Современные наземные обсерватории - это научно-исследовательские центры. Их задачи намного шире, чем просто наблюдение за небесными светилами, явлениями и искусственными космическими объектами.

Оснащены современные наземные обсерватории мощными телескопами (оптическими и радио), современным инструментарием для обработки полученной информации. Для них характерно наличие зданий с открывающимися люками или вообще зданий, которые вращаются вместе с оптическими телескопами. Радиотелескопы устанавливают под открытым небом.

Большинство обсерваторий расположены на возвышенностях или с хорошим круговым обзором, и обычно их расположение привязано к определенным координатам, важным в астрономии.

История отечественных обсерваторий

В России первый такой объект в отдельном помещении появился по инициативе архиепископа Афанасия в 1692 году. Оптический телескоп был установлен на колокольне в Холмогорах в Архангельской области.

В 1701 году соратник и сподвижник Петра I дипломат и ученый Яков Вилимович Брюс (Джеймс Дэниэль Брюс, 1670-1735) инициировал открытие обсерватории при Навигацкой школе на Сухаревой башне в Москве. Она имела большое практическое значение, тут имелись секстанты и квадранты. И именно тут впервые наблюдалось солнечное затмение 1706 года.

Первая официальная обсерватория появилась на Васильевском острове. Основана она была Петром I, но открылась уже при Екатерине I в 1725 году. Она сохранилась и сегодня, но уже как памятник архитектуры, под библиотекой Академии наук. И в свое время эта восьмиугольная башенка имела множество недостатков, в числе которых и расположение в черте города.

Все ее оборудование было перевезено в Пулковскую обсерваторию, закладка которой состоялась в 1835 году, а открылась она в 1839-м. Долгое время именно эта астрономическая обсерватория была ведущей в России, и сегодня она сохранила свои позиции.

Сегодня в России около 60 обсерваторий и исследовательских центров, порядка 10 высших учебных заведений с факультетами астрономии, более тысячи астрономов и несколько десятков тысяч увлеченных любителей звездного неба.

Самая важная

Пулковская астрономическая обсерватория - главная в Она расположена на Пулковских высотах, что в 19 километрах южнее Санкт-Петербурга. Она находится на Пулковском меридиане и имеет координаты 59°46"18" северной широты и 30°19"33" восточной долготы.

В штате этой главной обсерватории России 119 научных сотрудников, 49 кандидатов наук и 31 доктор наук. Все они ведут работу в следующих направлениях: астрометрия (параметры Вселенной), небесная механика, звездная динамика, эволюция звезд и внегалактическая астрономия.

Все это возможно благодаря наличию сложнейшей аппаратуры, главным среди которой является один из крупнейших солнечных телескопов в Европе - горизонтальный телескоп АЦУ-5.

Тут проводят вечерние и ночные экскурсии, когда можно увидеть особенно звездные «черные» ночи. А еще при этой обсерватории имеется музей, где собраны экспонаты, иллюстрирующие всю историю астрономии. Тут можно увидеть уникальные астрономические и геодезические старинные приборы.

Номер второй

Одна из крупнейших в России - Пущинская радиоастрономическая обсерватория АКЦ ФИАН. Она основана в 1956 году и сегодня является одной из наиболее хорошо оснащенных: радиотелескоп РТ-22, радиотелескопы меридианного типа с двумя антеннами ДКР-100 и БСА.

Располагается в г. Пущино Московской области, ее координаты 54°49" северной широты и 37°38" восточной долготы.

Интересный факт - в ветреную погоду можно услышать «пение» телескопов. Говорят, что в фильме «Война и мир» Сергей Бондарчук использовал запись именно этой надрывной песни.

Астрономическая обсерватория Казанского университета

В центре Казани в студенческом городке находится старинная обсерватория, основанная при кафедре астрономии в 1833 году. Это удивительное здание в стиле классицизма пользуется неизменной популярностью у гостей города. Сегодня это региональный центр по обучению и использованию спутниковых систем навигации.

Главные инструменты этой обсерватории: рефрактор Мерц, гелиометр Репсольда, труба Джорджа Доллона, экваториал и часы точного времени.

Одна из самых молодых

Байкальская астрофизическая обсерватория открыта в 1980 году. Она расположена в месте уникального микроастроклимата - локальные антициклоны и малые восходящие потоки воздуха с озера Байкал создают тут уникальные условия для наблюдений. Она принадлежит Институту Солнечно-Земной физики Российской академии наук и оснащена уникальной аппаратурой: большим солнечным вакуумным телескопом (самым большим на территории Евразии), телескопом полного диска Солнца, хромосферным телескопом, фотогелиографом.

Главные направления деятельности этой обсерватории России - наблюдение за тонкой структурой солнечных образований и регистрация вспышек на Солнце. Недаром ее и называют Солнечная обсерватория.

Самый большой телескоп

Самый крупный астрономический центр России - Специальная астрофизическая обсерватория. Она расположена у горы Пастуховая на Северном Кавказе (поселок Нижний Архыз, Карачаево-Черкесская Республика). Она была основана в 1966 году для работы самого большого в России телескопа - Большого Азимутального. Работа по его сборке велась 15 лет и сегодня это телескоп с максимальным шестиметровым оптическим зеркалом. Высота его купола - 50 метров, а диаметр - 45 метров.

Кроме него тут установлены и еще 2 телескопа чуть меньших размеров.

Здесь проводятся экскурсии для туристов, и в летнее время этот телескоп посещает до 700 человек в день. Туристы едут в этот отдаленный район еще и посмотреть икону Лик Христа. Это уникальная наскальная икона, которая расположена в километре от обсерватории.

Здесь, в Архызе, прошлое как будто соприкасается с будущим и стремлением человечества к звездам.

Нам собственного неба мало

В 2017 году стартовал российско-кубинский проект по оборудованию двух обсерваторий на Кубе. Идет активное обсуждение выбора наиболее оптимальных астроклиматических и метеорологических условий для размещения этих автономных и полностью автоматизированных телескопов.

Цель проекта подразумевает сбор и анализ информации о спектральных, позиционных и фотометрических характеристиках различных космических объектов.

Подробности Категория: Работа астрономов Опубликовано 11.10.2012 17:13 Просмотров: 7969

Астрономическая обсерватория – научно-исследовательское учреждение, в котором ведутся систематические наблюдения небесных светил и явлений.

Обычно обсерватория возводится на возвышенной местности, где открывается хороший кругозор. Обсерватория оснащена инструментами для наблюдений: оптическими и радиотелескопами, приборами для обработки результатов наблюдений: астрографами, спектрографами, астрофотометрами и другими приспособлениями для характеристики небесных тел.

Из истории обсерватории

Трудно даже назвать время появления первых обсерваторий. Конечно, это были примитивные сооружения, но все-таки в них велись наблюдения за небесными светилами. Самые древние обсерватории находятся в Ассирии, Вавилоне, Китае, Египте, Персии, Индии, Мексике, Перу и в других государствах. Древние жрецы по сути и были первыми астрономами, потому что они вели наблюдения за звездным небом.
– обсерватория, созданная еще в каменном веке. Она находится недалеко от Лондона. Это сооружение было одновременно и храмом, и местом для астрономических наблюдений - истолкование Стоунхенджа как грандиозной обсерватории каменного века принадлежит Дж. Хокинсу и Дж. Уайту. Предположения о том, что это древнейшая обсерватория, основаны на том, что ее каменные плиты установлены в определенном порядке. Общеизвестно, что Стоунхендж был священным местом друидов – представителей жреческой касты у древних кельтов. Друиды очень хорошо разбирались в астрономии, например, в строении и движении звёзд, размерах Земли и планет, различных астрономических явлениях. О том, откуда у них появились эти знания, науке не известно. Считается, что они унаследовали их от истинных строителей Стоунхенджа и, благодаря этому, обладали большой властью и влиянием.

На территории Армении найдена еще одна древнейшая обсерватория, построенная около 5 тыс. лет назад.
В XV веке в Самарканде великий астроном Улугбек построил выдающуюся для своего времени обсерваторию, в которой главным инструментом был огромный квадрант для измерения угловых расстояний звезд и других светил (об этом читайте на нашем сайте: http://сайт/index.php/earth/rabota-astrnom/10-etapi-astronimii/12-sredneverovaya-astronomiya).
Первой обсерваторией в современном смысле этого слова был знаменитый музей в Александрии , устроенный Птолемеем II Филадельфом. Аристилл, Тимохарис, Гиппарх, Аристарх, Эратосфен, Геминус, Птолемей и другие добились здесь небывалых результатов. Здесь впервые начали употреблять инструменты с разделёнными кругами. Аристарх установил медный круг в плоскости экватора и с его помощью наблюдал непосредственно времена прохождения Солнца через точки равноденствия. Гиппарх изобрёл астролябию (астрономический инструмент, основанный на принципе стереографической проекции) с двумя взаимно перпендикулярными кругами и диоптрами для наблюдений. Птолемей ввёл квадранты и устанавливал их при помощи отвеса. Переход от полных кругов к квадрантам был, в сущности, шагом назад, но авторитет Птолемея удержал квадранты на обсерваториях до времён Рёмера, который доказал, что полными кругами, наблюдения производятся точнее; однако, квадранты были совершенно оставлены только в начале XIX века.

Первые обсерватории современного типа стали строиться в Европе после того, как был изобретен телескоп – в XVII веке. Первая большая государственная обсерватория – парижская . Она была построена в 1667 г. Наряду с квадрантами и другими инструментами древней астрономии здесь уже использовались большие телескопы-рефракторы. В 1675 г. открылась Гринвичская королевская обсерватория в Англии, в предместье Лондона.
Всего в мире работает более 500 обсерваторий.

Российские обсерватории

Первой обсерваторией в России была частная обсерватория А.А. Любимова в Холмогорах Архангельской области, открытая в 1692 г. В 1701 г. по указу Петра I создана обсерватория при Навигацкой школе в Москве. В 1839 г. была основана Пулковская обсерватория под Петербургом, оборудованная самыми совершенными инструментами, которые давали возможность получать результаты высокой точности. За это Пулковскую обсерваторию назвали астрономической столицей мира. Сейчас в России более 20 астрономических обсерваторий, среди них ведущей является Главная (Пулковская) астрономическая обсерватория Академии наук.

Обсерватории мира

Среди зарубежных обсерваторий наиболее крупными являются Гринвичская (Великобритания), Гарвардская и Маунт-Паломарская (США), Потсдамская (Германия), Краковская (Польша), Бюраканская (Армения), Венская (Австрия), Крымская (Украина) и др. Обсерватории различных стран обмениваются результатами наблюдений и исследований, часто работают по одинаковой программе для выработки наиболее точных данных.

Устройство обсерваторий

Для современных обсерваторий характерным видом является здание цилиндрической или многогранной формы. Это башни, в которых установлены телескопы. Современные обсерватории оснащены оптическими телескопами, расположенными в закрытых куполообразных зданиях, или радиотелескопами. Световое излучение, собираемое телескопами, регистрируется фотографическими или фотоэлектрическими методами и анализируется для получения информации о далеких астрономических объектах. Обсерватории обычно располагаются далеко от городов, в климатических зонах с малой облачностью и по возможности на высоких плато, где незначительна атмосферная турбулентность и можно изучать инфракрасное излучение, поглощаемое нижними слоями атмосферы.

Типы обсерваторий

Существуют специализированные обсерватории, которые работают по узкой научной программе: радиоастрономические, горные станции для наблюдений Солнца; некоторые обсерватории связаны с наблюдениями, проводимыми космонавтами с космических кораблей и орбитальных станций.
Большая часть инфракрасного и ультрафиолетового диапазона, а также рентгеновские и гамма-лучи космического происхождения недоступны для наблюдений с поверхности Земли. Чтобы изучать Вселенную в этих лучах, необходимо вынести наблюдательные приборы в космос. Ещё недавно внеатмосферная астрономия была недоступна. Теперь она превратилась в быстро развивающуюся отрасль науки. Результаты, полученные на космических телескопах, без малейшего преувеличения перевернули многие наши представления о Вселенной.
Современный космический телескоп - уникальный комплекс приборов, разрабатываемый и эксплуатируемый несколькими странами в течение многих лет. В наблюдениях на современных орбитальных обсерваториях принимают участие тысячи астрономов со всего мира.

На картинке изображен проект крупнейшего инфрактрасного оптического телескопа в Европейской южной обсерватории высотой 40 м.

Для успешной работы космической обсерватории требуются совместные усилия самых разных специалистов. Космические инженеры готовят телескоп к запуску, выводят его на орбиту, следят за обеспечением энергией всех приборов и их нормальным функционированием. Каждый объект может наблюдаться в течение нескольких часов, поэтому особенно важно удерживать ориентацию спутника, вращающегося вокруг Земли, в одном и том же направлении, чтобы ось телескопа оставалась нацеленной строго на объект.

Инфракрасные обсерватории

Для проведения инфракрасных наблюдений в космос приходится отправлять довольно большой груз: сам телескоп, устройства для обработки и передачи информации, охладитель, который должен уберечь ИК-приёмник от фонового излучения - инфракрасных квантов, испускаемых самим телескопом. Поэтому за всю историю космических полётов в космосе работало очень мало инфракрасных телескопов. Первая инфракрасная обсерватория была запущена в январе 1983 г. в рамках совместного американо-европейского проекта IRAS. В ноябре 1995 г. Европейским космическим агентством осуществлён запуск на околоземную орбиту инфракрасной обсерватории ISO. На ней стоит телескоп с таким же диаметром зеркала, как и на IRAS, но для регистрации излучения используются более чувствительные детекторы. Наблюдениям ISO доступен более широкий диапазон инфракрасного спектра. В настоящее время разрабатывается ещё несколько проектов космических инфракрасных телескопов, которые будут запущены в ближайшие годы.
Не обходятся без ИК-аппаратуры и межпланетные станции.

Ультрафиолетовые обсерватории

Ультрафиолетовое излучение Солнца и звёзд практически полностью поглощается озоновым слоем нашей атмосферы, поэтому УФ-кванты можно регистрировать только в верхних слоях атмосферы и за ее пределами.
Впервые ультрафиолетовый телескоп-рефлектор с диаметром зеркала (SO см и специальный ультрафиолетовый спектрометр выведены в космос на совместном американо-европейском спутнике «Коперник», запущенном в августе 1972 г. Наблюдения на нём проводились до 1981 г.
В настоящее время в России ведутся работы по подготовке запуска нового ультрафиолетового телескопа «Спектр-УФ» с диаметром зеркала 170 см. Крупный международный проект "Спектр-УФ" - "Всемирная космическая обсерватория" (ВКО-УФ) направлен на исследование Вселенной в недоступном для наблюдений с наземными инструментами ультрафиолетовом (УФ) участке электромагнитного спектра: 100-320 нм.
Проект возглавляется Россией, он включен в Федеральную космическую программу на 2006-2015 гг. В настоящее время в работе над проектом участвуют Россия, Испания, Германия и Украина. Казахстан и Индия также проявляют интерес к участию в проекте. Институт астрономии РАН - головная научная организация проекта. Головной организацией по ракетно-космическому комплексу является НПО им. С.А. Лавочкина.
В России создается основной инструмент обсерватории - космический телескоп с главным зеркалом диаметром 170 см. Телескоп будет оснащен спектрографами высокого и низкого разрешения, спектрографом с длинной щелью, а также камерами для построения высококачественных изображений в УФ и оптическом участках спектра.
По возможностям проект ВКО-УФ сравним с американским Космическим Телескопом Хаббла (КТХ) и даже превосходит его в спектроскопии.
ВКО-УФ откроет новые возможности для исследований планет, звездной, внегалактической астрофизики и космологии. Запуск обсерватории запланирован на 2016 год.

Рентгеновские обсерватории

Рентгеновские лучи доносят до нас информацию о мощных космических процессах, связанных с экстремальными физическими условиями. Высокая энергия рентгеновских и гамма-квантов позволяет регистрировать их «поштучно», с точным указанием времени регистрации. Детекторы рентгеновского излучения относительно легки в изготовлении и имеют небольшой вес. Поэтому они использовались для наблюдений в верхних слоях атмосферы и за её пределами с помощью высотных ракет ещё до первых запусков искусственных спутников Земли. Рентгеновские телескопы устанавливались на многих орбитальных станциях и межпланетных космических кораблях. Всего в околоземном пространстве побывало около сотни таких телескопов.

Гамма-обсерватории

Гамма-излучение тесно соседствует с рентгеновским, поэтому для его регистрации используют похожие методы. Очень часто на телескопах, запускаемых на околоземные орбиты, исследуют одновременно и рентгеновские, и гамма-источники. Гамма-лучи доносят до нас информацию о процессах, происходящих внутри атомных ядер, и о превращениях элементарных частиц в космосе.
Первые наблюдения космических гамма-источников были засекречены. В конце 60-х - начале 70-х гг. США запустили четыре военных спутника серии «Вела». Аппаратура этих спутников разрабатывалась для обнаружения всплесков жёсткого рентгеновского и гамма-излучения, возникающих во время ядерных взрывов. Однако оказалось, что большинство из зарегистрированных всплесков не связаны с военными испытаниями, а их источники расположены не на Земле, а в космосе. Так было открыто одно из самых загадочных явлений во Вселенной - гамма-вспышки, представляющие собой однократные мощные вспышки жёсткого излучения. Хотя первые космические гамма-вспышки были зафиксированы ещё в 1969 г., информацию о них опубликовали только четыре года спустя.

ОБСЕРВАТОРИЯ: СОВРЕМЕННЫЕ НАЗЕМНЫЕ ОБСЕРВАТОРИИ

К статье ОБСЕРВАТОРИЯ

Оптические обсерватории. Место для строительства оптической обсерватории обычно выбирают вдали от городов с их ярким ночным освещением и смогом. Обычно это вершина горы, где тоньше слой атмосферы, сквозь который приходится вести наблюдения. Желательно, чтобы воздух был сухим и чистым, а ветер не особенно сильным. В идеале обсерватории должны быть равномерно распределены по поверхности Земли, чтобы в любой момент можно было наблюдать объекты северного и южного неба. Однако исторически сложилось так, что большинство обсерваторий расположено в Европе и Северной Америке, поэтому небо Северного полушария изучено лучше. В последние десятилетия начали сооружать крупные обсерватории в Южном полушарии и вблизи экватора, откуда можно наблюдать как северное, так и южное небо. Древний вулкан Мауна-Кеа на о. Гавайи высотой более 4 км считается лучшим местом в мире для астрономических наблюдений . В 1990-х годах там обосновались десятки телескопов разных стран.

Они помогли ученым сделать некоторые удивительные открытия: наличие галактик на краю Вселенной; изучая сверхновые для определения скорости расширения Вселенной, природы гамма-всплесков и, совсем недавно, планет вокруг других звезд. Из маршрутов мула, используемых для подъема 60-дюймового зеркала к вершине горы до холодных ночей, Эдвин Хаббл, переписывая наши знания о космосе, Гора Уилсон представляет эволюцию современной обсерватории и одно из самых важных научных мест в истории. Джордж Эллери Хейл, 60-дюймовая область, которая больше не используется для исследований, использовалась для изучения спектральной классификации звезд, которая составляет основу современной астрономии. 60-дюймовый телескоп Хейл был самым большим в мире 100 лет назад, но в течение 10 лет он был заменен на 100-дюймовый прицел по соседству.

Башня. Телескопы - очень чувствительные приборы. Для защиты от непогоды и перепадов температуры их помещают в специальные здания - астрономические башни. Небольшие башни имеют прямоугольную форму с плоской раздвигающейся крышей. Башни крупных телескопов обычно делают круглыми с полусферическим вращающимся куполом, в котором для наблюдений открывается узкая щель. Такой купол хорошо защищает телескоп от ветра во время работы. Это важно, поскольку ветер раскачивает телескоп и вызывает дрожание изображения. Вибрация почвы и здания башни также отрицательно влияет на качество изображений. Поэтому телескоп монтируют на отдельном фундаменте, не связанном с фундаментом башни. Внутри башни или вблизи нее монтируют систему вентиляции подкупольного пространства и установку для вакуумного напыления на зеркало телескопа отражающего алюминиевого слоя, тускнеющего со временем.

Используя 100-дюймовый Эдвин Хаббл, обнаружил, что пятна «туманностей» в небе были на самом деле далекими галактиками, что вселенная расширяется; и что скорость этого расширения соизмерима с созданием Большого взрыва. Предоставлено публичной библиотекой Лос-Анджелеса.

Паломарский 200-дюймовый телескоп Хейл помог революционизировать современную астрономию - и современную выпечку. Джордж Эллери Хейл, который пал в создании Паломара, так как у него была гора. Эдвин Хаббл первым посмотрел сквозь зеркало. Впоследствии каталог станет основой для каталога «Путеводители», используемого космическим телескопом Хаббла. Через три четверти века Паломар все еще делает новые открытия. Разрешение превышает Космический телескоп Хаббла в два раза.

Монтировка. Для наведения на светило телескоп должен вращаться вокруг одной или двух осей. К первому типу относятся меридианный круг и пассажный инструмент - небольшие телескопы, поворачивающиеся вокруг горизонтальной оси в плоскости небесного меридиана. Двигаясь с востока на запад, каждое светило дважды в сутки пересекает эту плоскость. С помощью пассажного инструмента определяют моменты прохождения звезд через меридиан и таким образом уточняют скорость вращения Земли; это необходимо для службы точного времени. Меридианный круг позволяет измерять не только моменты, но и место пересечения звездой меридиана; это нужно для создания точных карт звездного неба.

Галилей Галилей не изобретал телескоп, он, вероятно, даже не первый, кто указал на подзорную трубу в небо. Но его мощный дизайн телескопа позволил ему увидеть дальше, чем кто-либо раньше, или, по крайней мере, тот, кто опубликовал свои выводы. Его открытия потрясли основы Европы, заработав ему титул «Отец современной науки».

Он также был осужден за ересь за пропаганду гелиоцентрического взгляда на вселенную. Предоставлено Институтом Франклина, Филадельфия. В 18 насыщенных событиями лет космический телескоп Хаббла соответствовал своему тезку, одному из величайших астрономов в истории. Учитывая его знаменитое роковое рождение, захватывающие открытые открытки и всемирно известные открытия, было бы трудно утверждать, что один другой научный инструмент имел более широкое влияние, чем Хаббл.

Первые обсерватории современного типа стали строиться в Европе после того, как был изобретен телескоп – в XVII веке. Первая большая государственная обсерватория – парижская . Она была построена в 1667 г. Наряду с квадрантами и другими инструментами древней астрономии здесь уже использовались большие телескопы-рефракторы. В 1675 г. открылась Гринвичская королевская обсерватория в Англии, в предместье Лондона.
Всего в мире работает более 500 обсерваторий.

Российские обсерватории

Первой обсерваторией в России была частная обсерватория А.А. Любимова в Холмогорах Архангельской области, открытая в 1692 г. В 1701 г. по указу Петра I создана обсерватория при Навигацкой школе в Москве. В 1839 г. была основана Пулковская обсерватория под Петербургом, оборудованная самыми совершенными инструментами, которые давали возможность получать результаты высокой точности. За это Пулковскую обсерваторию назвали астрономической столицей мира. Сейчас в России более 20 астрономических обсерваторий, среди них ведущей является Главная (Пулковская) астрономическая обсерватория Академии наук.

Обсерватории мира

Среди зарубежных обсерваторий наиболее крупными являются Гринвичская (Великобритания), Гарвардская и Маунт-Паломарская (США), Потсдамская (Германия), Краковская (Польша), Бюраканская (Армения), Венская (Австрия), Крымская (Украина) и др. Обсерватории различных стран обмениваются результатами наблюдений и исследований, часто работают по одинаковой программе для выработки наиболее точных данных.

Устройство обсерваторий

Для современных обсерваторий характерным видом является здание цилиндрической или многогранной формы. Это башни, в которых установлены телескопы. оснащены оптическими телескопами, расположенными в закрытых куполообразных зданиях, или радиотелескопами. Световое излучение, собираемое телескопами, регистрируется фотографическими или фотоэлектрическими методами и анализируется для получения информации о далеких астрономических объектах. Обсерватории обычно располагаются далеко от городов, в климатических зонах с малой облачностью и по возможности на высоких плато, где незначительна атмосферная турбулентность и можно изучать инфракрасное излучение, поглощаемое нижними слоями атмосферы.

Типы обсерваторий

Существуют специализированные обсерватории, которые работают по узкой научной программе: радиоастрономические, горные станции для наблюдений Солнца; некоторые обсерватории связаны с наблюдениями, проводимыми космонавтами с космических кораблей и орбитальных станций.
Большая часть инфракрасного и ультрафиолетового диапазона, а также рентгеновские и гамма-лучи космического происхождения недоступны для наблюдений с поверхности Земли. Чтобы изучать Вселенную в этих лучах, необходимо вынести наблюдательные приборы в космос. Ещё недавно внеатмосферная астрономия была недоступна. Теперь она превратилась в быстро развивающуюся отрасль науки. Результаты, полученные на космических телескопах, без малейшего преувеличения перевернули многие наши представления о Вселенной.
Современный космический телескоп - уникальный комплекс приборов, разрабатываемый и эксплуатируемый несколькими странами в течение многих лет. В наблюдениях на современных орбитальных обсерваториях принимают участие тысячи астрономов со всего мира.

На картинке изображен проект крупнейшего инфрактрасного оптического телескопа в Европейской южной обсерватории высотой 40 м.

Для успешной работы космической обсерватории требуются совместные усилия самых разных специалистов. Космические инженеры готовят телескоп к запуску, выводят его на орбиту, следят за обеспечением энергией всех приборов и их нормальным функционированием. Каждый объект может наблюдаться в течение нескольких часов, поэтому особенно важно удерживать ориентацию спутника, вращающегося вокруг Земли, в одном и том же направлении, чтобы ось телескопа оставалась нацеленной строго на объект.

Инфракрасные обсерватории

Для проведения инфракрасных наблюдений в космос приходится отправлять довольно большой груз: сам телескоп, устройства для обработки и передачи информации, охладитель, который должен уберечь ИК-приёмник от фонового излучения - инфракрасных квантов, испускаемых самим телескопом. Поэтому за всю историю космических полётов в космосе работало очень мало инфракрасных телескопов. Первая инфракрасная обсерватория была запущена в январе 1983 г. в рамках совместного американо-европейского проекта IRAS. В ноябре 1995 г. Европейским космическим агентством осуществлён запуск на околоземную орбиту инфракрасной обсерватории ISO. На ней стоит телескоп с таким же диаметром зеркала, как и на IRAS, но для регистрации излучения используются более чувствительные детекторы. Наблюдениям ISO доступен более широкий диапазон инфракрасного спектра. В настоящее время разрабатывается ещё несколько проектов космических инфракрасных телескопов, которые будут запущены в ближайшие годы.
Не обходятся без ИК-аппаратуры и межпланетные станции.

Ультрафиолетовые обсерватории

Ультрафиолетовое излучение Солнца и звёзд практически полностью поглощается озоновым слоем нашей атмосферы, поэтому УФ-кванты можно регистрировать только в верхних слоях атмосферы и за ее пределами.
Впервые ультрафиолетовый телескоп-рефлектор с диаметром зеркала (SO см и специальный ультрафиолетовый спектрометр выведены в космос на совместном американо-европейском спутнике «Коперник», запущенном в августе 1972 г. Наблюдения на нём проводились до 1981 г.
В настоящее время в России ведутся работы по подготовке запуска нового ультрафиолетового телескопа «Спектр-УФ» с диаметром зеркала 170 см. Крупный международный проект "Спектр-УФ" - "Всемирная космическая обсерватория" (ВКО-УФ) направлен на исследование Вселенной в недоступном для наблюдений с наземными инструментами ультрафиолетовом (УФ) участке электромагнитного спектра: 100-320 нм.
Проект возглавляется Россией, он включен в Федеральную космическую программу на 2006-2015 гг. В настоящее время в работе над проектом участвуют Россия, Испания, Германия и Украина. Казахстан и Индия также проявляют интерес к участию в проекте. Институт астрономии РАН - головная научная организация проекта. Головной организацией по ракетно-космическому комплексу является НПО им. С.А. Лавочкина.
В России создается основной инструмент обсерватории - космический телескоп с главным зеркалом диаметром 170 см. Телескоп будет оснащен спектрографами высокого и низкого разрешения, спектрографом с длинной щелью, а также камерами для построения высококачественных изображений в УФ и оптическом участках спектра.
По возможностям проект ВКО-УФ сравним с американским Космическим Телескопом Хаббла (КТХ) и даже превосходит его в спектроскопии.
ВКО-УФ откроет новые возможности для исследований планет, звездной, внегалактической астрофизики и космологии. Запуск обсерватории запланирован на 2016 год.

Рентгеновские обсерватории

Рентгеновские лучи доносят до нас информацию о мощных космических процессах, связанных с экстремальными физическими условиями. Высокая энергия рентгеновских и гамма-квантов позволяет регистрировать их «поштучно», с точным указанием времени регистрации. Детекторы рентгеновского излучения относительно легки в изготовлении и имеют небольшой вес. Поэтому они использовались для наблюдений в верхних слоях атмосферы и за её пределами с помощью высотных ракет ещё до первых запусков искусственных спутников Земли. Рентгеновские телескопы устанавливались на многих орбитальных станциях и межпланетных космических кораблях . Всего в околоземном пространстве побывало около сотни таких телескопов.

Гамма-обсерватории

Гамма-излучение тесно соседствует с рентгеновским, поэтому для его регистрации используют похожие методы. Очень часто на телескопах, запускаемых на околоземные орбиты, исследуют одновременно и рентгеновские, и гамма-источники. Гамма-лучи доносят до нас информацию о процессах, происходящих внутри атомных ядер , и о превращениях элементарных частиц в космосе.
Первые наблюдения космических гамма-источников были засекречены. В конце 60-х - начале 70-х гг. США запустили четыре военных спутника серии «Вела». Аппаратура этих спутников разрабатывалась для обнаружения всплесков жёсткого рентгеновского и гамма-излучения, возникающих во время ядерных взрывов. Однако оказалось, что большинство из зарегистрированных всплесков не связаны с военными испытаниями, а их источники расположены не на Земле, а в космосе. Так было открыто одно из самых загадочных явлений во Вселенной - гамма-вспышки, представляющие собой однократные мощные вспышки жёсткого излучения. Хотя первые космические гамма-вспышки были зафиксированы ещё в 1969 г., информацию о них опубликовали только четыре года спустя.

← Вернуться

×
Вступай в сообщество «rmgvozdi.ru»!
ВКонтакте:
Я уже подписан на сообщество «rmgvozdi.ru»